Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels.
نویسندگان
چکیده
The glycine receptor belongs to the ligand-gated ion channel superfamily. It is a chloride conducting channel composed of four transmembrane domains. It was previously shown that the second transmembrane domain (M2) of the glycine receptor forms an ion conduction pathway throughout lipid bilayers. The amino-acid sequence of the transmembrane segment M2 of the glycine receptor has a high homology to all receptors of the ligand-gated ion channel superfamily. In our report, we have used a synthetic M2 peptide. It was incorporated into a planar membrane of known lipid composition and currents induced by M2 were measured by the Black Lipid Membrane technique. When the planar lipid bilayer was composed of 75% phosphatidylethanolamine and 25% phosphatidylserine, the reversal potential measured in a 150/600 mM KCl (cis/trans) gradient was -19 mV suggesting that the examined >pore was preferential to anions, P(K)/P(Cl) = 0.25. In contrast, when 75% phosphatidylserine and 25% phosphatidylethanolamine was used, the reversal potential was +20 mV and the >pore was preferential to cations, P(K)/P(Cl) = 4.36. Single-channel currents were recorded with two predominant amplitudes corresponding to the main-conductance and sub-conductance states. Both conductance states (about 12 pS and 30 pS) were measured in a symmetric solution of 50 mM KCl. The observed single-channel properties suggest that the selectivity and conductance of the pore formed by the M2 peptide of the glycine receptor depend on the lipid composition of the planar bilayer.
منابع مشابه
Binding of ArgTX-636 in the NMDA receptor ion channel.
The N-methyl-d-aspartate receptors (NMDARs) constitute an important class of ligand-gated cation channels that are involved in the majority of excitatory neurotransmission in the human brain. Compounds that bind in the NMDAR ion channel and act as blockers are use- and voltage-dependent inhibitors of NMDAR activity and have therapeutic potential for treatment of a variety of brain diseases or a...
متن کاملEvidence for a centrally located gate in the pore of a serotonin-gated ion channel.
Serotonin-gated ion channels (5-HT3) are members of the ligand-gated channel family, which includes channels that are opened directly by the neurotransmitter acetylcholine, GABA, glycine, or glutamate. Although there is general agreement that the second transmembrane domain (M2) lines the pore, the position of the gate in the M2 is less certain. Here, we used substituted cysteine accessibility ...
متن کاملOpen-channel structures of the human glycine receptor α1 full-length transmembrane domain.
Glycine receptors play a major role in mediating fast inhibitory neurotransmission in the spinal cord and brain stem, yet their high-resolution structures remain unsolved. We determined open-channel structures of the full-length transmembrane domain (TMD) of the human glycine receptor α1-subunit (hGlyR-α1) using nuclear magnetic resonance (NMR) spectroscopy and electron micrographs. hGlyR-α1 TM...
متن کاملIdentification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel.
Synthetic peptides with sequences representing putative transmembrane (M) segments of CFTR (the cystic fibrosis transmembrane conductance regulator) were used as tools to identify the involvement of such segments in forming the ionic pore of the CFTR Cl- channel. Peptides with sequences corresponding to M2 and M6 form anion-selective channels after reconstitution in lipid bilayers. In contrast,...
متن کاملIdentification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel.
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha1 subunit. These flan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2002